
FLoM: the Free Lock Manager
Locking is evil, but if you need it, try to avoid the hell

Christian Ferrari, tiian@users.sourceforge.net, 2016

Abstract
This paper introduces FLoM, a free and open
source software project that provides a tool for lo-
cal and distributed process synchronization.
FLoM provides both a command line utility and a
client library: the command line utility is intended
for the system engineer while the client library al-
lows the system programmer to integrate FLoM
with its own custom software.
FLoM provides a rich and flexible semantic that
simplify the implementation of complex synchro-
nization scenarios.
Last but not least, the software implements an
event-driven communication protocol to provide
good scalability characteristics.

Introduction
FLoM is a free and open source software licensed
under the terms of the GNU Public License and
can be freely downloaded from GitHub and from
SourceForge [1].
Process synchronization is discouraged in the im-
plementation of scalable systems as explained in
The Reactive Manifesto [2], but for many daily
tasks it’s helpful.
Sometimes, it is used to reduce the complexity of
an algorithm: assuming that some data cannot be
concurrently accessed simplifies code development
and test.
Other times, process synchronization cannot be
avoided because it’s necessary to guarantee the
logical correctness of an algorithm.
In the event that you decide to implement some
process synchronization, FLoM will be an easy to
use and flexible solution.
FLoM provides two fully integrated tools: a com-
mand line utility and a client library available for 5
different languages: C, C++, Java, PHP and
Python.
The command line utility is designed for the sys-
tem engineer that needs an easy tool to synchro-
nize shell commands and shell scripts. Typical use
cases are: avoiding the concurrent execution of two
conflicting shell scripts, limiting the maximum
number of shell scripts concurrently executed, as-
signing different processing directories to different
shell scripts and so on…
The client library exposes a straightforward API
that allows the system programmer and the soft-
ware developer to synchronize some program por-

tions. Typical use cases are: avoiding to read a file
while another program is writing to it, obtaining a
unique identifier or a unique timestamp while
many concurrent programs are doing the same, dis-
tributing a set of items to distinct programs without
conflicts and so on…
A distinctive feature of FLoM is the full integra-
tion between the command line utility and the
multi-language client library. As an example, with
FLoM you can synchronize a backup shell script, a
batch Java program and a PHP web application.
All the above can be transparently used in com-
pletely different deployment environments: inside
a single system or across a network of intercon-
nected systems using the TCP/IP protocol. The
support of IPv4, IPv6 and TLS/SSL allows a wide
range of network deployments: LAN, MAN, WAN
and Internet.

Architecture
FLoM implements a client/server architecture: the
client is a light piece of code that sends requests
and waits answers from the server. All the synchro-
nization logic is managed by the server.
The server component, called flom daemon, must
be activated using the command line flom utility.
The client component is provided in two different
flavors: the command line flom utility and the
libflom library.

Figure 1: client/server architecture

All the components shown in Figure 1 can live in a
single Linux system or in a distributed environ-
ment: the only requirement that must be met is net-
work connectivity.

Implicit FLoM daemon (auto)start
FLoM is designed with the aim of reducing the
complexity: in the easiest scenarios you don’t have
to explicitly start a flom daemon because it’s au-

command line /
shell script

flom utility

flom daemon

custom software

libflom library

mailto:tiian@users.sourceforge.net

tomatically activated by the flom utility if neces-
sary. The behavior can be described with this sim-
ple algorithm:
• at start up, the flom utility looks for an avail-

able flom daemon
• if the search ends with a positive result, the
flom utility connects to the available flom
daemon and uses it as the synchronization
server

• if the search ends with a negative result, the
flom utility activates a new flom daemon and
uses it as the synchronization server

Explicit FLoM daemon start
Daemon “auto start” is a feature that can be easily
disabled by the system engineer that wants to ex-
plicitly activate the flom daemon. As shown in
section “Persistency and consistency”, disabling
“auto start” can be very useful for some use cases.

The FLoM client library (libflom)
libflom is a C library that provides a compact
and easy to use API that can be used to synchro-
nize custom developed programs using the FLoM
model. Together with libflom for C, FLoM pro-
vides four further language bindings for: C++,
Java, PHP and Python1.
Software developed by the customer and linked to
the libflom library cannot use flom daemon
“autostart” feature and the flom daemon must be
explicitly activated using the flom utility.

FLoM programming model
FLoM is developed using the C language and the
libflom library exposes a standard ANSI C in-
terface.
C++ and Java are truly object oriented program-
ming languages, but the FLoM programming
model is strictly based on the C native interface
even for these languages. Nevertheless, integrating
your own custom software with FLoM is really
simple and straightforward.

C native interface
The basic usage requires only 1 “object” of type
flom_handle_t:

1 The support for the C language is provided through
FLoM native interface, the support for the C++
language is based on a header only wrapper of the C
native interface. The Java language interface is
based on native Java classes and a JNI mapping of
the C native interface. PHP and Python interfaces
are SWIG [3] based wrappers of the C native
interface.

flom_handle_t *handle;

and 4 functions:

flom_handle_new();
flom_handle_lock(handle);
flom_handle_unlock(handle);
flom_handle_delete(handle);

all the code between flom_handle_lock and
flom_handle_unlock is synchronized.
All the configuration options can be specified in-
side the program using a
flom_handle_set_something2

function or outside the program using configura-
tion files.
All the configuration options can be retrieved us-
ing a
flom_handle_get_something
function.
flom_handle_set_something is typically
used after flom_handle_new and before
flom_handle_lock to configure the behavior at
run-time;
flom_handle_get_something can be used
at any stage.
PHP and Python languages use a similar, C like
syntax:

$handle = new flom_handle_t();
flom_handle_init($handle);
flom_handle_lock($handle);
flom_handle_unlock($handle);
flom_handle_clean($handle);

handle = flom_handle_t();
flom_handle_init(handle);
flom_handle_lock(handle);
flom_handle_unlock(handle);
flom_handle_clean(handle);

C++ interface
The basic usage requires only 1 object of class
FlomHandle:

FlomHandle *handle;

and 4 methods:

handle = new FlomHandle();
handle->lock();
handle->unlock();
delete handle;

all the code between handle->lock() and
handle->unlock() is synchronized.

2 something must be replaced with the name of the
interested option

All the functions available in the C native interface
are mapped to methods in the C++ interface;
configuration options can be changed with

handle->setSomething

and inquired with

handle->getSomething

Java language uses a similar syntax:

FlomHandle handle;
handle = new FlomHandle();
handle.lock();
handle.unlock();
handle.free();

Synchronization model
The synchronization model implemented by FLoM
is based on the concepts of resource and lock.
The resource is the abstraction introduced by
FLoM to support process synchronization: two or
more processes synchronize themselves specifying
the same resource and an operation (“lock”, “un-
lock”).
FLoM extensively uses the concept of resource to
model process synchronization: the client, without
distinction between flom utility and libflom li-
brary, asks to the server (flom daemon) to lock a
specific resource.
The diagram in Figure 2 shows two processes that
exclusively lock the resource “/foo/bar”.

Figure 2: exclusive lock example

FLoM does not support only “exclusive locking”,
but implements the same lock modes introduced by
the OpenVMS Distributed Lock Manager [4]:
“null”, “concurrent read”, “concurrent write”,
“protected read” (share lock), “protected write”
(update lock) and “exclusive” (exclusive lock).
Table 1 represents the truth table and describes the
lock modes behavior.

Mode N CR CW PR PW EX

N Y Y Y Y Y Y

CR Y Y Y Y Y N

CW Y Y Y N N N

PR Y Y N Y N N

PW Y Y N N N N

EX Y N N N N N

Table 1: truth table for lock modes

The example in Figure 3 shows three processes:
1. locks resource “apple” using mode “pro-

tected read” (first process)
2. locks resource “apple” using mode “pro-

tected read” (second process)
3. locks resource “apple” using mode “exclu-

sive” (last process)

Figure 3: mixed lock mode example

Looking at the truth table we can see that “pro-
tected read” is compatible with “protected read”,
but “exclusive” is not compatible with “protected
read”; the practical result is the concurrent execu-
tion of the first two processes and the delay of the
third one.
A resource is completely specified by its name and
the scope of a resource name is limited to a single
flom daemon. Inside a flom daemon, a resource
name uniquely identify a resource.
FLoM provides different type of resources to sup-
port a wide range of use cases: “simple”, “nu-
meric”, “set”, “hierarchical”, “sequence” and
“timestamp”. As explained in the next paragraphs,
some resource types support only a subset of the
lock modes described in Table 1.
The type of a resource is automatically inferred
from its name: there’s no need to specify the type
with an attribute. The syntax of resource names is
based on regular expressions [5].

Simple resources
Simple resources are probably the easiest and most
common resources to use; they supports all the
lock modes.

/foo/bar

/foo/bar

time

pr
o
ce

ss
e
s

1
2 /foo/bar

wait time...

apple

time

pr
oc

es
se

s
1

2
apple

apple

3
wait time...

apple

Example: command1 and command2 can be
synchronized to exclusively use resource R1 with
these commands:

flom -r R1 -l EX -- command1
flom -r R1 -l EX -- command2

To specify protected read lock mode for com-
mand2, use this command line:

flom -r R1 -l PR -- command2

To reproduce the scenario depicted in Figure 3, use
these commands:

flom -r apple -l PR -- command1
flom -r apple -l PR -- command2
flom -r apple -l EX -- command3

Numeric resources
Numeric resources are useful to model synchro-
nization processes related to multiple producers
and/or multiple consumers; numeric resources can
be used to implement workload capping. The only
supported lock mode is “exclusive”.
Example: to allow a maximum number of 2 con-
current executions of command, use a numeric re-
source as below:

flom -r limit[2] -- command

Independently from the number of different com-
mand lines, as shown in Figure 4, a maximum
number of 2 command will be concurrently exe-
cuted.

Figure 4: numeric resource example

Resource sets
Resource sets can be used to model synchroniza-
tion processes with a finite set of distinct resources
that must be assigned to the requesters: every re-
quester can lock only one resource at a time. This
type can be used to implement a simple round
robin scheduler. The only supported lock mode is
“exclusive”.

Example: the dosomething command pro-
cesses the content of a directory passed as first ar-
gument, 4 directories (cyan, magenta, yellow,
black) must be continuously processed, but only
one dosomething command at a time can work
on a directory. The following command lines:

flom -r ‘cyan.magenta.yellow.black’
-- dosomething
flom -r ‘cyan.magenta.yellow.black’
-- dosomething
flom -r ‘cyan.magenta.yellow.black’
-- dosomething
flom -r ‘cyan.magenta.yellow.black’
-- dosomething

produce the same result of these ones:

dosomething cyan
dosomething magenta
dosomething yellow
dosomething black

Figure 5: resource set example

Figure 5 shows an example with a resource set of 4
elements: the fifth process has to wait the
completion of the second process and gets the
same resource: “m”.

Hierarchical resources
Hierarchical resources main usage is related to
file system resources (files and directories); they
support all the lock modes. Hierarchical resources
support lock propagation: a lock at some level,
propagates to all the underlying levels.
Even if the hierarchical resources natively model
file system resources, they can be used to model
any abstract hierarchical structure because there’s
no necessity to have the corresponding file system
resources (FLoM resources are abstract).
Example: command1 needs protected read ac-
cess to /foo/bar and command2 needs exclu-
sive access to /foo/bar/apple:

limit[2]

time

pr
o

ce
ss

e
s

1
2

limit[2]

limit[2]

3

wait time...

limit[2]

c.m.y.b

time

pr
oc

es
se

s
1

2

c.m.y.b

c.m.y.b

3

wait time...

c.m.y.b

4
5

→ m

→ c

→ y

→ b

→ m

flom -r /foo/bar -l PR -- command1
flom -r /foo/bar/apple -l EX --
command2

In the above example, command2 will be exe-
cuted after command1 end because the exclusive
lock at the /foo/bar/apple level is not com-
patible with a protected read lock at the
/foo/bar level (see Figure 6).

Figure 6: hierarchical resource example

Sequence resources
Sequence resources combines two functions:
process synchronization and retrieval of a sequen-
tial unique identifier at the same time. Many times
sequential unique identifiers are generated using a
relational database, but sometimes the full power
of a relational database is not necessary or hurts.
Sequence resources inherit a characteristic from
numeric resources: a limited number of requesters
can obtain a different sequence id at the same time.
Sequence resources can be “transactional”: in the
event of execution failure, the unique identifier can
be assigned to a different requester. The only sup-
ported lock mode is “exclusive”.

Example: the following command lines gets dif-
ferent sequence ids

flom -r _s_id[1] –– echo
flom -r _s_id[1] –– echo
flom -r _s_id[1] –– echo
flom -r _s_id[1] –– echo
...
1
2
3
4
…

Figure 7 shows the behavior of a sequence re-
source that allows the concurrent execution of 4
distinct processes: the fifth requester has to wait
for the completion of the second one because no
free slots are available.

Figure 7: multiple sequence resource example

Figure 8 shows the behavior of a transactional se-
quence resource that allows the concurrent execu-
tion of 4 distinct processes: the second requester
crashes and its unique id (value=2) is recycled and
passed to the fifth requester.

Figure 8: transactional sequence resource example

Timestamp resources
Timestamp resources combines two functions:
process synchronization and retrieval of a unique
timestamp at the same time; they are similar to se-
quence resources but they provide a unique time-
stamp instead of a unique identifier and they can’t
be transactional.
Timestamp resources inherit a characteristic from
numeric resources: a limited number of requesters
can obtain a different unique timestamp at the
same time. The only supported lock mode is “ex-
clusive”.

Example: the following command lines obtains
different timestamps

/foo/bar

/foo/bar/apple

time

pr
o

ce
ss

e
s

1
2 /foo/bar/apple

wait time...

_S_id[4]

time

pr
oc

es
se

s
1

2

_S_id[4]

_S_id[4]

3

wait time...

_S_id[4]

4
5

→ 2

→ 1

→ 3

→ 4

→ 2

Process failure, sequence
id is recycled

_s_id[4]

time

pr
oc

es
se

s
1

2

_s_id[4]

_s_id[4]

3

wait time...

_s_id[4]

4
5

→ 2

→ 1

→ 3

→ 4

→ 5

flom -r "_t_bar.%x.%X[3]"
 –– echo
flom -r "_t_bar.%x.%X[3]"
 –– echo
flom -r "_t_bar.%x.%X[3]"
 –– echo
…
bar.07/05/16.10:39:01
bar.07/05/16.10:39:02
bar.07/05/16.10:39:03
…

Figure 9 shows the behavior of a timestamp re-
source that allows the concurrent execution of 3
distinct processes.

Figure 9: timestamp resource example

Configuration
FLoM implements a multiple layer configuration:
an option configured in a higher layer overrides the
values configured in the lower layers.
Figure 10a shows the configuration layers avail-
able for the flom utility (both client and daemon).

Figure 10a: values defined in the system default config file
override hard wired default values; … ; values passed as com-
mand line options override all the previous ones.

Figure 10b shows the configuration layers avail-
able for libflom library:

Figure 10b: values defined in the system default config file
override hard wired default values; values defined in the user
default config file override values defined in the system de-
fault config; … ; values set using the API override all the pre-
vious ones.

Configuration example
The following examples show three different ways
to configure the same option.
The name of the resource that must be used can be
specified in a configuration file using the “Name”
key inside the “Resource” section:

...3

[Resource]
Name=MyResource123
...

Using the flom utility, the resource name can be
configured using the command line arguments:

flom --resource-name=MyResource123
-- command_that_must_be_executed

Using the libflom library, the resource name
can be configured using the setter method:

flom_handle_set_resource_name(my_h
andle, “MyResource123”);

Technology overview
A detailed description of FLoM internals is outside
the scope of this introductory paper, but some in-
formation are useful to deploy the technology in
the best way.

3 The dots are not part of the file syntax: in this
example they must be intended like “rows before”
and “rows after” the interesting ones

_t_bar.%x.%X[3]

time

p
ro

ce
ss

es
1

2

_t_bar.%x.%X[3]

_t_bar.%x.%X[3]

3

wait time...

_t_bar.%x.4

→ bar.07/05/16.10:39:01

→ bar.07/05/16.10:39:02

→ bar.07/05/16.10:39:03

→ bar.07/05/16.10:39:09

Hard wired configuration

System default config file
Example:

/usr/local/etc/flom.conf

User default config file
Example:

$HOME/.flom

User custom config file
Example:

-c flom.config

Command line arguments
Example:

--lock-mode=PR

Hard wired configuration

System default config file
Example:

/usr/local/etc/flom.conf

User default config file
Example:

$HOME/.flom

Programmatic configuration
Example:

flom_handle_set_lock_mode(...)

Daemon internal architecture
The flom daemon is a multi-threaded process
with one listener thread and a distinct thread for
every resource4.
The usage of a dedicated thread for each resource
could be considered a waste of computing re-
sources, but it carries three main benefits:
• flom daemon uses a very low number of ex-

plicit synchronization system calls: flom
client requests are intrinsically serialized by
socket functions

• flom daemon latency is minimized: when a re-
quest for a resource arrives, there are only two
possible delay conditions. The first one is the
lack of an available CPU thread, the second one
is the execution of a previously arrived request
for the same resource

• flom daemon automatically exploits vertical
scalability: the higher the number of CPU
threads, the higher the number of concurrent
synchronization operations.

All the communications between the flom client
and the flom daemon use a custom, non blocking,
XML based, message passing protocol.

Persistency and consistency
The flom daemon does not manage persistent
data: everything is kept in memory (RAM).
The lack of long term persistence could be consid-
ered a limit, but under the assumption that lock
state is ephemeral5, a memory only design carries
at least two benefits:
• in the event of a crash, flom daemon can be

restarted without any special attention6

• the synchronization process is not affected by
disk latency

Every distributed system has to face the constraints
described by the CAP theorem[6], and FLoM is no
exception. One of the most serious consistency is-
sues related to the FLoM technology is related to
network partition: under some circumstances, two
different, but equivalent flom daemons could be
activated inside a network of distributed systems.
Figure 11a shows a possible distributed initial state
with one server (daemon) and three clients nodes.

4 Hierarchical resources need just one thread for
each distinct root

5 Long lasting locks are typically not compatible with
scalable and high performance systems

6 Clients can recognize a server crash checking the
return code: in the event of a server crash after the
lock and before the unlock operation, an error code
will be returned to the client by the unlock
operation.

Figure 11a: example of a distributed system before a network
partitioning event

Figure 11b shows the result of a network partition
if the daemon implicit auto start feature is dis-
abled: the two clients in the right side of the net-
work disconnects from the server and errors are
raised.

Figure 11b: the clients in the right side of the network cannot
connect to the server and raise an error

Figure 11c shows the result of a network partition
if daemon auto start and auto discovery7 features
are enabled: in the right side of the network a sec-
ond daemon can be started. This event can poten-
tially be an inconsistency issue because the two
network partitions evolve without coordination:
sometimes this is the desired behavior, sometimes
this is a dangerous behavior.

Figure 11c: the two network partitions independently evolve

Security
The FLoM project chose to implement security us-
ing the standard features of SSL/TLS. Data trans-
mission is protected using cryptography, peer to
peer handshake is authorized using mutual authen-

7 The auto discovery feature is implemented using IP
multicast and allows the clients to automatically
discover the IP address of the server.

Server

Client Client

Client

Client

ClientServer

Client

Server

ClientServer

Client

tication. TLS mutual authentication introduces a
management burden, but it removes all the issues
related to secret management.

Networking
The FLoM project supports IPv6 that can be used,
in conjunction with SSL/TLS security, to deploy in
the wild: Internet connected devices can communi-
cate in a secure way without auxiliary security like
a protected VPN.
The usage of UDP/IP multicast, both IPv4 and
IPv6, provides to FLoM a useful auto discovery
feature that can be used for cloud deployment:
flom daemon can be activated on systems with
dynamic IP addressing.

Testing
The FLoM project distributes a complete set of
tests along with the source code. The automatic
test set is based on the GNU autotool suite: it’s
used to perform full regression testing after every
release and to certify the supported platforms.
FLoM is a software developed for the Linux oper-
ating system: it’s tested and supported for both
Ubuntu and CentOS.

Comparison with similar tools
The author is not aware of a competing tool. Tools
designed for the shell environment like lockrun
[7], halockrun [8] and getlock [9] use an
auxiliary file to manage the locking part of the syn-
chronization process: the design choice limits the
usage to the local system or requires the usage of a
shared NFS volume to host a lock file shared
among many systems. All the tools provides only a
command line interface: an API is not available.

Conclusions
This brief paper describes the basic characteristics
of an open source and free software project that
provides synchronization tools for:
• shell commands and shell scripts executed from

the command line or the cron Linux standard
service

• custom programs developed by the user using
one of the following programming languages:
C, C++, Java, PHP and Python

Leveraging the resource concept, FLoM can be
used to implement both trivial and complex syn-
chronization use cases among shell commands
(scripts) and custom programs.
The performance, scalability and security features
provided by FLoM enable a wide range of different
deployments from a single system to a complex
network of geographically interconnected systems.

References
[1] FLoM on GitHub:
https://github.com/tiian/flom
FLoM on SourceForge:
https://sourceforge.net/projects/flom/
FLoM documentation:
https://sourceforge.net/p/flom/wiki/Home/
[2] Glossary of The Reactive manifesto:
http://www.reactivemanifesto.org/glossary#Scalabi
lity
[3] SWIG:
http://www.swig.org/
[4] DEC OpenVMS DLM:
https://en.wikipedia.org/wiki/Distributed_lock_ma
nager
[5] FLoM resources:
https://sourceforge.net/p/flom/wiki/Resource/
[6] Seth Gilbert, Nancy Lynch. Brewer’s conjec-
ture and the feasibility of consistent, available, par-
tition-tolerant web services. ACM SIGACT News,
Volume 33 Issue 2, June 2002, 51-59
[7] lockrun home page:
http://www.unixwiz.net/tools/lockrun.html
[8] halockrun home page:
http://www.fatalmind.com/software/hatools/halock
run.man.html
[9] getlock home page:
https://sites.google.com/site/columscode/home/getl
ock

Acronyms and abbreviations
API: Application Programming Interface
JNI: Java Native Interface
LAN: Local Area Network
MAN: Metropolitan Area Network
NFS: Network File System
VPN: Virtual Private Network
WAN: Wide Area Network

https://sites.google.com/site/columscode/home/getlock
https://sites.google.com/site/columscode/home/getlock
http://www.fatalmind.com/software/hatools/halockrun.man.html
http://www.fatalmind.com/software/hatools/halockrun.man.html
http://www.unixwiz.net/tools/lockrun.html
https://sourceforge.net/p/flom/wiki/Resource/
https://en.wikipedia.org/wiki/Distributed_lock_manager
https://en.wikipedia.org/wiki/Distributed_lock_manager
http://www.swig.org/
http://www.reactivemanifesto.org/glossary#Scalability
http://www.reactivemanifesto.org/glossary#Scalability
https://sourceforge.net/p/flom/wiki/Home/
https://sourceforge.net/projects/flom/
https://github.com/tiian/flom

